

CO₂SMOS - Advanced chemicals production from biogenic CO₂ emissions for circular bio-based industries

CO₂SMOS Project overview

Dimitrios Kourkoumpas, CERTH

Biomethaverse workshop

20th of June, 2024

The CO2MSMOS project has recived funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 101000790

Introduction

Issue: Generation of > **506.7** Mt/y biogenic CO₂ in Europe from different green sources (e.g., biogas, fermentation processes, solid biomass combustion)

Motivation: Recycling/conversion of biogenic CO₂ into long-life sustainable chemicals, or bioproducts in general, is of strategic importance for the future of EU BBIs

Solution: Development of a set of novel and costcompetitive biotechnological & intensified chemical conversion processes to convert the industrial biogenic CO_2 & renewable energy sources (green H₂ and biomass) into added-value chemicals.

The project counts on the wide expertise and high interdisciplinarity of 15 international partners, including:

- Technology developers
- Industrial end-users;
- Interdisciplinary research institutions;
- Service providers &
- Knowledge hubs

CO₂SMOS Concept

CO₂SMOS expected results

CO₂SMOS Industrial Symbiosis Platform

CO₂SMOS targets at the **creation of new marketplace** for CO₂SMOS value chains to promote **synergies** between the **interested BBIS**. The developed Industrial platform is designed for BBIs to determine the **benefits of biochemicals production** from a **CE perspective**.

What is the added value of CO₂SMOS Platform?

- Offers a comprehensive framework for exploring and optimizing value chains;
 - Users can leverage interactive graphs to explore and compare environmental and economic indicators in real-time, enabling informed decision-making.

What are the steps for the integration & creation of the CO_2SMOS Platform?

- The development of a methodology for environmental & economic assessment of CO₂SMOS concept based on the life cycle thinking;
- Followed by the development of a hybrid AHP-TOPSIS MCDA methodology to improve sustainability of CO₂SMOS conversion routes.

С	SMOS INTRODUCTION BLOCK	IAGRAM PATHWAYS OVERVIEW $arsigma$ PATHWAYS EVALUATION
Ti <u>C</u> ir b;	This online platform is part of the <u>CO2SMOS</u> project, and it is designed to promote synergies between the interested bio-based industries (BBIs) by creating a new marketplace for the investigated value chains.	
1	$Biogenic CO_2 \longrightarrow Acetate \longrightarrow PHA$	
2	Biogenic CO ₂ \longrightarrow Acetate \longrightarrow PHB	
3	$Biogenic CO_2 \longrightarrow Acetate \longrightarrow LcDCA$	
4	Biogenic CO ₂ \longrightarrow Acetate \longrightarrow 2,3 BDO	
5	Biogenic CO ₂ \longrightarrow Syngas \longrightarrow 2,3 BDO	(\div)
6	Biogenic CO $_2 \longrightarrow$ Syngas \longrightarrow BTEX	+
7	Biogenic CO₂ ───────────────────────────────────	(+)

CO₂SMOS Platform: Demonstration of LCA module

CO

GHG Emissions Savings

CO2 Emissions Avoided

Net CO2 Conversion Rate

Dynamic Parameters

Enter your desired values for the dynamic parameters, then click 'Submit' to run a customized LCA simulation. Once the simulation is complete, click 'Update' to visualize the results on the graph.

Dimitris Kourkoumpas <u>kourkoumpas@certh.gr</u>

20th of June 2024

The CO2SMOS project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000790